from src.einstellungen import * import RPi.GPIO as GPIO import time import threading import math GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) class motor(): def __init__(self, name, sp1, sp2, sp3, sp4, t1, t2, te, es, halten, schritte): self.name = name self.sp1 = sp1 self.sp2 = sp2 self.sp3 = sp3 self.sp4 = sp4 self.t1 = t1 self.t2 = t2 self.te = te self.endschalter = es self.halten = halten self.schritte_max = schritte self.pos = 0 self.freq = freq self.freq_halten = freq_halten self.cyc_halten = cyc_halten self.pwm1 = 0 self.pwm2 = 0 self.pwm3 = 0 self.pwm4 = 0 def start(self): GPIO.setup(self.sp1, GPIO.OUT) GPIO.setup(self.sp2, GPIO.OUT) GPIO.setup(self.sp3, GPIO.OUT) GPIO.setup(self.sp4, GPIO.OUT) self.pwm1 = GPIO.PWM(self.sp1, self.freq) self.pwm1.start(0) self.pwm2 = GPIO.PWM(self.sp2, self.freq) self.pwm2.start(0) self.pwm3 = GPIO.PWM(self.sp3, self.freq) self.pwm3.start(0) if self.halten == 1: self.pwm4 = GPIO.PWM(self.sp4, self.freq_halten) self.pwm4.start(cyc_halten) else: self.pwm4 = GPIO.PWM(self.sp4, self.freq) self.pwm4.start(0) def stop(self): self.pwm1.stop() self.pwm2.stop() self.pwm3.stop() self.pwm4.stop() def vorwaerts(self, schritte, eichen=0): ges_schritte = schritte * 8 if eichen == 1: temp_t1 = self.te temp_t2 = self.te else: temp_t1 = self.t1 temp_t2 = self.t2 if self.halten == 1: self.pwm4.ChangeFrequency(self.freq) for i in range(int(schritte)): if self.pos >= self.schritte_max: break else: self.pos += 1 temp_pos = i * 8 einzelschritt(self.pwm1, 1, ges_schritte, temp_pos, temp_t1, temp_t2) einzelschritt(self.pwm4, 0, ges_schritte, temp_pos + 1, temp_t1, temp_t2) einzelschritt(self.pwm2, 1, ges_schritte, temp_pos + 2, temp_t1, temp_t2) einzelschritt(self.pwm1, 0, ges_schritte, temp_pos + 3, temp_t1, temp_t2) einzelschritt(self.pwm3, 1, ges_schritte, temp_pos + 4, temp_t1, temp_t2) einzelschritt(self.pwm2, 0, ges_schritte, temp_pos + 5, temp_t1, temp_t2) einzelschritt(self.pwm4, 1, ges_schritte, temp_pos + 6, temp_t1, temp_t2) einzelschritt(self.pwm3, 0, ges_schritte, temp_pos + 7, temp_t1, temp_t2) print(str(self.pos)) if self.halten == 1: self.pwm4.ChangeFrequency(self.freq_halten) self.pwm4.ChangeDutyCycle(self.cyc_halten) else: self.pwm4.ChangeDutyCycle(0) def rueckwaerts(self, schritte, eichen=0): ges_schritte = schritte * 8 if eichen == 1: temp_t1 = self.te temp_t2 = self.te else: temp_t1 = self.t1 temp_t2 = self.t2 if self.halten == 1: self.pwm4.ChangeFrequency(self.freq) for i in range(int(schritte)): if GPIO.input(self.endschalter) == GPIO.LOW: print('Endschalter ' + self.name) self.pos = 0 break else: self.pos -= 1 temp_pos = i * 8 einzelschritt(self.pwm3, 1, ges_schritte, temp_pos, temp_t1, temp_t2) einzelschritt(self.pwm4, 0, ges_schritte, temp_pos + 1, temp_t1, temp_t2) einzelschritt(self.pwm2, 1, ges_schritte, temp_pos + 2, temp_t1, temp_t2) einzelschritt(self.pwm3, 0, ges_schritte, temp_pos + 3, temp_t1, temp_t2) einzelschritt(self.pwm1, 1, ges_schritte, temp_pos + 4, temp_t1, temp_t2) einzelschritt(self.pwm2, 0, ges_schritte, temp_pos + 5, temp_t1, temp_t2) einzelschritt(self.pwm4, 1, ges_schritte, temp_pos + 6, temp_t1, temp_t2) einzelschritt(self.pwm1, 0, ges_schritte, temp_pos + 7, temp_t1, temp_t2) print(str(self.pos)) if self.halten == 1: self.pwm4.ChangeFrequency(self.freq_halten) self.pwm4.ChangeDutyCycle(self.cyc_halten) else: self.pwm4.ChangeDutyCycle(0) def eichen(self): if GPIO.input(self.endschalter) == GPIO.LOW: self.vorwaerts(10, 1) self.rueckwaerts(self.schritte_max, 1) self.pos = 0 def gehe_zu(self, position): temp_schritte = int(position) - self.pos print(str(temp_schritte)) if temp_schritte > 0: self.vorwaerts(temp_schritte) else: self.rueckwaerts(abs(temp_schritte)) def einzelschritt(spule, status, ges_schritte, schritt, t1, t2): w = (schritt * 100 / (ges_schritte - 1)) * 1.8 s = round(math.sin(math.radians(w)), 2) t = t2 - (s * (t2 - t1)) if status == 1: for i in range(0, 91, 5): dc = round(math.sin(math.radians(i)) * 100, 0) spule.ChangeDutyCycle(dc) time.sleep(t) else: for i in range(0, 91, 5): dc = round(math.cos(math.radians(i)) * 100, 0) spule.ChangeDutyCycle(dc) time.sleep(t)