import sys, getopt import RPi.GPIO as GPIO import time import threading delay = 0.004 delay_y = 0.012 delay_z = 0.004 freq = 50000 cyc = 4 pos_m1 = 0 pos_m2 = 0 pos_m3 = 0 ausgleich_m3 = 1 schritte_m1 = 180 schritte_m2 = 120 schritte_m3 = 40 #schritte = int(sys.argv[1]) #zoom = int(sys.argv[2]) #print('Schritte: ', schritte) #print('Zoom: ', zoom) GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) m1_coil_A_1_pin = 17 # gelb m1_coil_B_1_pin = 18 # schwarz m1_coil_A_2_pin = 27 # orange m1_coil_B_2_pin = 22 # braun m2_coil_A_1_pin = 19 # schwarz m2_coil_B_1_pin = 13 # gelb m2_coil_A_2_pin = 6 # orange m2_coil_B_2_pin = 5 # rot m3_coil_A_1_pin = 16 # schwarz m3_coil_B_1_pin = 12 # gelb m3_coil_A_2_pin = 21 # braun m3_coil_B_2_pin = 20 # orange RELAIS_1_GPIO = 2 RELAIS_2_GPIO = 3 Endschalter_1 = 23 Endschalter_2 = 26 Endschalter_3 = 25 # anpassen, falls andere Sequenz #StepCount = 8 #Seq = list(range(0, StepCount)) #Seq[0] = [1,0,0,0] #Seq[1] = [1,1,0,0] #Seq[2] = [0,1,0,0] #Seq[3] = [0,1,1,0] #Seq[4] = [0,0,1,0] #Seq[5] = [0,0,1,1] #Seq[6] = [0,0,0,1] #Seq[7] = [1,0,0,1] StepCount = 4 Seq = list(range(0, StepCount)) Seq[0] = [1,0,0,0] Seq[1] = [0,1,0,0] Seq[2] = [0,0,1,0] Seq[3] = [0,0,0,1] #GPIO.setup(enable_pin, GPIO.OUT) GPIO.setup(m1_coil_A_1_pin, GPIO.OUT) GPIO.setup(m1_coil_A_2_pin, GPIO.OUT) GPIO.setup(m1_coil_B_1_pin, GPIO.OUT) GPIO.setup(m1_coil_B_2_pin, GPIO.OUT) GPIO.setup(m2_coil_A_1_pin, GPIO.OUT) GPIO.setup(m2_coil_A_2_pin, GPIO.OUT) GPIO.setup(m2_coil_B_1_pin, GPIO.OUT) GPIO.setup(m2_coil_B_2_pin, GPIO.OUT) GPIO.setup(m3_coil_A_1_pin, GPIO.OUT) GPIO.setup(m3_coil_A_2_pin, GPIO.OUT) GPIO.setup(m3_coil_B_1_pin, GPIO.OUT) GPIO.setup(m3_coil_B_2_pin, GPIO.OUT) GPIO.setup(Endschalter_1, GPIO.IN) GPIO.setup(Endschalter_2, GPIO.IN) GPIO.setup(Endschalter_3, GPIO.IN) # pwm Setup fuer Haltestrom pwm1a = GPIO.PWM(m1_coil_A_1_pin, freq) pwm2a = GPIO.PWM(m2_coil_A_1_pin, freq) pwm2b = GPIO.PWM(m2_coil_B_1_pin, freq) #pwm1.start(0) # Initialisierung #pwm2.start(0) # Initialisierung GPIO.setup(RELAIS_1_GPIO, GPIO.OUT) # GPIO Modus zuweisen GPIO.setup(RELAIS_2_GPIO, GPIO.OUT) # GPIO Modus zuweisen GPIO.output(RELAIS_1_GPIO, GPIO.LOW) # an GPIO.output(RELAIS_2_GPIO, GPIO.HIGH) # aus time.sleep(3) GPIO.output(RELAIS_2_GPIO, GPIO.LOW) # an def setStep(motor, w1, w2, w3, w4): if motor == 'm1': GPIO.output(m1_coil_A_1_pin, w1) GPIO.output(m1_coil_B_1_pin, w2) GPIO.output(m1_coil_A_2_pin, w3) GPIO.output(m1_coil_B_2_pin, w4) if motor == 'm2': GPIO.output(m2_coil_A_1_pin, w1) GPIO.output(m2_coil_B_1_pin, w2) GPIO.output(m2_coil_A_2_pin, w3) GPIO.output(m2_coil_B_2_pin, w4) if motor == 'm3': GPIO.output(m3_coil_A_1_pin, w1) GPIO.output(m3_coil_B_1_pin, w2) GPIO.output(m3_coil_A_2_pin, w3) GPIO.output(m3_coil_B_2_pin, w4) def forward(motor, delay, steps): global pos_m1, pos_m2, pos_m3 global schritte_m1, schritte_m2, schritte_m3 #d = int(delay) / 1000.0 d = delay s = int(steps) for i in range(s): if motor == 'm1': if pos_m1 >= schritte_m1: print('Motor1 hat positives Ende erreicht') break else: pos_m1 = pos_m1 + 1 #print('Motor1-Pos: ' + str(pos_m1)) if motor == 'm2': if pos_m2 >= schritte_m2: print('Motor2 hat positives Ende erreicht') break else: pos_m2 = pos_m2 + 1 #print('Motor2-Pos: ' + str(pos_m2)) if motor == 'm3': if pos_m3 >= schritte_m3: print('Motor3 hat positives Ende erreicht') break else: pos_m3 = pos_m3 + 1 #print('Motor3-Pos: ' + str(pos_m3)) #time.sleep(0.01) for j in range(StepCount): setStep(motor, Seq[j][0], Seq[j][1], Seq[j][2], Seq[j][3]) time.sleep(d) if motor == 'm3': for i in range(int(ausgleich_m3)): for j in range(StepCount): setStep(motor, Seq[j][0], Seq[j][1], Seq[j][2], Seq[j][3]) time.sleep(d) def backwards(motor, delay, steps): global pos_m1, pos_m2, pos_m3 global schritte_m1, schritte_m2, schritte_m3 #d = int(delay) / 1000.0 d = delay s = int(steps) for i in range(s): if motor == 'm1': if GPIO.input(Endschalter_1) == GPIO.LOW: print("Motor1 Endschalter") pos_m1 = 0 break else: pos_m1 = pos_m1 - 1 #print('Motor1-Pos: ' + str(pos_m1)) if motor == 'm2': if GPIO.input(Endschalter_2) == GPIO.LOW: print("Motor2 Endschalter") pos_m2 = 0 break else: pos_m2 = pos_m2 - 1 #print('Motor2-Pos: ' + str(pos_m2)) if motor == 'm3': if GPIO.input(Endschalter_3) == GPIO.LOW: print("Motor3 Endschalter") pos_m3 = 0 break else: pos_m3 = pos_m3 - 1 #print('Motor3-Pos: ' + str(pos_m3)) for j in reversed(range(StepCount)): setStep(motor, Seq[j][0], Seq[j][1], Seq[j][2], Seq[j][3]) time.sleep(d) if motor == 'm3': for i in range(int(ausgleich_m3)): for j in reversed(range(StepCount)): setStep(motor, Seq[j][0], Seq[j][1], Seq[j][2], Seq[j][3]) time.sleep(d) def stopMotor(motor, stop): if motor == 'm1': if stop == 0: pwm1a.stop() else: pwm1a.start(0) pwm1a.ChangeFrequency(freq) pwm1a.ChangeDutyCycle(cyc) if motor == 'm2': if stop == 0: pwm2a.stop() #pwm2b.stop() else: pwm2a.start(0) pwm2a.ChangeFrequency(freq) pwm2a.ChangeDutyCycle(cyc) #pwm2b.start(0) #pwm2b.ChangeFrequency(freq) #pwm2b.ChangeDutyCycle(cyc) def initMotor(motor): global pos_m1, pos_m2, pos_m3 if motor == 'm1': print('Motor1 eichen') if GPIO.input(Endschalter_1) == GPIO.LOW: forward('m1', delay, 10) backwards('m1', delay, schritte_m1) stopMotor('m1', 1) pos_m1 = 0 if motor == 'm2': print('Motor2 eichen') if GPIO.input(Endschalter_2) == GPIO.LOW: forward('m2', delay_y, 10) backwards('m2', delay_y, schritte_m2) stopMotor('m2', 1) pos_m2 = 0 if motor == 'm3': print('Motor3 eichen') if GPIO.input(Endschalter_3) == GPIO.LOW: forward('m3', delay_z, 10) backwards('m3', delay_z, schritte_m3) pos_m3 = 0 class MoveV(threading.Thread): def __init__(self, motor, schritte, delay, halten): threading.Thread.__init__(self) self.motor = motor self.schritte = schritte self.delay = delay self.halten = halten self.daemon = True self.start() def run(self): stopMotor(self.motor, 0) forward(self.motor, self.delay, self.schritte) setStep(self.motor, 0,0,0,0) if self.halten == 1: stopMotor(self.motor, 1) class MoveR(threading.Thread): def __init__(self, motor, schritte, delay, halten): threading.Thread.__init__(self) self.motor = motor self.schritte = schritte self.delay = delay self.halten = halten self.daemon = True self.start() def run(self): stopMotor(self.motor, 0) backwards(self.motor, self.delay, abs(self.schritte)) setStep(self.motor, 0,0,0,0) if self.halten == 1: stopMotor(self.motor, 1) #initMotor('m1') print('start') initMotor('m1') initMotor('m2') initMotor('m3') try: while True: drehen = raw_input("Drehen: ") hoehe = raw_input("Hoehe: ") zoom = raw_input("Zoom: ") #speed = raw_input("Speed: ") #f = raw_input("Frequenz: ") #c = raw_input("Zykluslaenge: ") #delay = int(speed) #freq = int(f) #cyc = int(c) steps_m1 = int(drehen) - pos_m1 #print('Drehen: ' + str(steps_m1)) steps_m2 = int(hoehe) - pos_m2 #print('Hoehe: ' + str(steps_m2)) steps_m3 = int(zoom) - pos_m3 #print('Zoom: ' + str(steps_m3)) if int(steps_m1) > 0: t1 = MoveV('m1', int(steps_m1), delay, 1) else: t1 = MoveR('m1', int(steps_m1), delay, 1) if int(steps_m2) > 0: t2 = MoveV('m2', int(steps_m2), delay_y, 1) else: t2 = MoveR('m2', int(steps_m2), delay_y, 1) if int(steps_m3) > 0: t3 = MoveV('m3', int(steps_m3), delay_z, 0) else: t3 = MoveR('m3', int(steps_m3), delay_z, 0) t1.join() t2.join() t3.join() except KeyboardInterrupt: print("Ctl C pressed - ending program") #pwm.stop() GPIO.cleanup() #fertig #if __name__ == '__main__': # while True: # test = raw_input('Test')